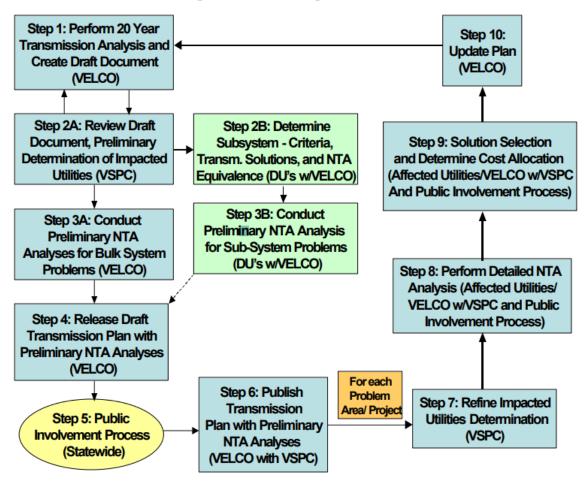
NTA ANALYSIS

2024 Vermont Long-Range Transmission Plan – Frequency and Duration Analysis Update


vermont electric power company

VSPC Meeting January, 2025

Background

Transmission Planning Process Including Non-Transmission Alternatives

2024 LRP Result Summary

Currency of Pully Overting	F071000777	Lean	
SUMMARY OF BULK SYSTEM REGIONAL GROUPING &	ESTIMATED TRANSMISSION	LEAD & AFFECTED DISTRIBUTION	SCREENED IN OR OUT OF
TRANSMISSION SOLUTIONS	PROJECT COST	UTILITIES	FULL NTA ANALYSIS
Northern area	PROJECT COST	Lead: GMP	In
N-1-1 contingencies causing overload & voltage collapse exposure		Affected: All VT	75 MW of load
Install a new 115 kV line between Essex and Williston	\$120M	/ inceted. / iii v i	reduction in northern
Affected transformers: Queen City, Tafts Corner, Barre	Three X \$11M		area by 2033
 Need date is 2032 based on winter expected forecast 	THICE X 911IVI		Grows over time
Northwest area – includes northern area		Lead: GMP	In
N-1-1 contingencies causing thermal overload		Affected: All VT	80 MW of load
Rebuild West Rutland to Middlebury 115 kV line	\$215M	7.110000017.111 7.1	reduction in northwest
Affected transformer: Middlebury	\$13M		area by 2033
Need date is 2029 based on summer expected forecast	7 20		Grows over time
Central area – includes northwest area		Lead: GMP	In
N-1-1 contingencies causing thermal overload		Affected: All VT	Keep load below 2033
Rebuild Coolidge - Cold River - North Rutland 115 kV line	\$185M		load level in central area
Affected transformers: North Rutland, Cold River, Windsor	Three X \$13M		Grows over time
Need date is 2034 based on summer expected forecast			
Southern area – includes central area	No VELCO	Lead: GMP	In
 Rebuild NGRID Bellows Falls-Ascutney Tap 115 kV line and GMP 	estimate	Affected: All VT,	Keep load below 2033
Vernon Road to Newfane 46 kV		NGRID	load level in southern
 N-1-1 contingency causing thermal overload 			area
 Affected transformer: GMP Vernon Road 115/46 kV 			Grows over time
 Need date is 2034 based on summer expected forecast 			
State of Vermont		Lead: GMP	ln
 N-1-1 contingency causing thermal overload 		Affected: All VT,	Keep load below 2033
 Install new 345 kV line between Vernon & Eversource Northfield, 	\$5M for	Eversource	load level in Vermont
MA	VELCO portion		Grows over time
Affected transformers: Bennington	\$13M		
 Need date is 2034 based on summer expected forecast 			

Step 8: NTA Analysis

Reliability Exposure:

- ➤ How often will the NTA be needed and for how long
- ➤ Area focused: Northern area, Northeast etc
- ➤ Identify the frequency and duration of the issues identified in the LRP
- ➤ Identify the critical load for summer and winter
- ➤ Use sectionalizing of the subtransmission system

Step 8: NTA Analysis

Frequency

How many days of the year will show an overload at the peak hour

Velco Load	Date	
1388.95	1/18/33 6:00 PM	
1365.73	1/19/33 6:00 PM	
1344.83	1/12/33 6:00 PM	
1337.73	1/20/33 6:00 PM	
1327.33	1/13/33 6:00 PM	
1316.82	1/14/33 6:00 PM	
1304.44	1/21/33 6:00 PM	
1302.55	1/24/33 6:00 PM	
1294.45	1/28/33 6:00 PM	
1293.33	1/17/33 6:00 PM	
1291.74	1/25/33 6:00 PM	
	. / /	

Re-run the LRP simulations until finding the critical load

Step 8: NTA Analysis

Duration

Case Scenario	se Scenario Monitored facility	
		Load %
Jan 18 2033 00:00	QUEEN CITY 115/34.5kV Trsf	109.33
Jan 18 2033 01:00	QUEEN CITY 115/34.5kV Trsf	116.88
Jan 18 2033 02:00	QUEEN CITY 115/34.5kV Trsf	109.75
Jan 18 2033 03:00	QUEEN CITY 115/34.5kV Trsf	106.18
Jan 18 2033 04:00	QUEEN CITY 115/34.5kV Trsf	108.25
Jan 18 2033 05:00	QUEEN CITY 115/34.5kV Trsf	113.56
Jan 18 2033 06:00	QUEEN CITY 115/34.5kV Trsf	107.59
Jan 18 2033 07:00	QUEEN CITY 115/34.5kV Trsf	117.01
Jan 18 2033 08:00	QUEEN CITY 115/34.5kV Trsf	119.12
Jan 18 2033 09:00	QUEEN CITY 115/34.5kV Trsf	121.45
Jan 18 2033 10:00	QUEEN CITY 115/34.5kV Trsf	118.15
Jan 18 2033 11:00	QUEEN CITY 115/34.5kV Trsf	112.06
Jan 18 2033 12:00	QUEEN CITY 115/34.5kV Trsf	108.34
Jan 18 2033 13:00	QUEEN CITY 115/34.5kV Trsf	104.66
Jan 18 2033 14:00	QUEEN CITY 115/34.5kV Trsf	116.49
Jan 18 2033 15:00	QUEEN CITY 115/34.5kV Trsf	105.43
Jan 18 2033 16:00	QUEEN CITY 115/34.5kV Trsf	114.74
Jan 18 2033 17:00	QUEEN CITY 115/34.5kV Trsf	121.94
Jan 18 2033 18:00	QUEEN CITY 115/34.5kV Trsf	127.8
Jan 18 2033 19:00	QUEEN CITY 115/34.5kV Trsf	122.19
Jan 18 2033 20:00	QUEEN CITY 115/34.5kV Trsf	118.29
Jan 18 2033 21:00	QUEEN CITY 115/34.5kV Trsf	119.29
Jan 18 2033 22:00	QUEEN CITY 115/34.5kV Trsf	116.57
Jan 18 2033 23:00	QUEEN CITY 115/34.5kV Trsf	118.3

- For the summer and winter peak days used in the LRP, how many additional hours of the day continue to show the overload
- Build additional cases to look at the remaining 23 hours for the summer and winter days studies in the LRP

